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A majority of the existing overlay multicast proposals have assumed that the nodes (users)
are cooperative and thus focus on the global topology enhancement. However, a unique
and important characteristic of overlay nodes is that, as application-layer agents, they
can be selfish with their own interests. To achieve higher Quality-of-Service (QoS) in the
streaming application, an overlay node can behave selfishly in the neighborhood informa-
tion collection stage or in the construction action stage. While the former has recently been
widely investigated, the impact of selfishness in the construction action remains unclear.

In this paper, we present the systematic study on the impact of user selfishness during
construction action on the streaming quality of overlay multicast, in both tree and mesh
based structures. Our investigation considers multiple QoS measures, including stream
latency, resolution, and continuity. Our contribution is twofold. First, we discuss the con-
struction-action policy a selfish overlay node chooses to improve its individual multi-met-
ric QoS. Second, we demonstrate according to our model, that the selfishness-aware policy
in the construction action is consistent with the cooperative policy required by overlay
multicast protocols to improve the QoS of the global multicast session. The implication
is that we can leverage the user selfishness in the construction-action stage to form a desir-
able overlay topology.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Given the multi-receiver nature of video programs,
multicast is a natural vehicle for supporting video stream-
ing applications [1]. It is known that network-layer multi-
cast, or IP multicast, is efficient, but its reach and scope
remain very limited due to many practical and political
reasons. In the past years, application-layer overlay multi-
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cast has emerged as a promising alternative. Overlay mul-
ticast realizes routing and data transmission in the
application layer, which is remarkably easier to implement
and deploy, though less efficient [14,26]. Overlay multicast
is also more flexible, because it is decoupled from the net-
work-layer routing, and end systems support much richer
semantics in the application layer.

Building an overlay multicast structure with high
streaming quality is clearly critical to streaming applica-
tions. Existing proposals on overlay multicast structures
can be broadly classified into two categories [26], namely,
tree-based and mesh-based. The former follows a well-
ordered parent/children relation for data delivery. On the
contrary, the latter does not maintain such a fixed relation,
but let each node keep a small set of partners to exchange
their data availability information, and accordingly fetch
expected data.

http://dx.doi.org/10.1016/j.comnet.2011.06.019
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In both tree and mesh overlays, the structure establish-
ment generally consists of two logical stages, that is, infor-
mation collection and construction action. In the first stage,
overlay nodes learn the information of other nodes and
the virtual overlay links, such as the outgoing bandwidth,
pair-wise delay, and etc. In the construction action stage,
based on the available information, each node selects a
long-time parent to receive stream data in tree based over-
lay multicast, or selects a segment-providing node to fetch
a certain segment in mesh based sessions.

A majority of the existing overlay multicast proposals
assume that the nodes (users) are cooperative and thus fo-
cus on the global topology enhancement [15,16]. However,
a unique and important characteristic of overlay nodes is
that, as application-layer agents, they can be selfish with
their own interests. To achieve better QoS, an overlay node
can behave selfishly in the information collection stage or
construction action stage. The impact of user selfishness
in the information collection stage has recently been lar-
gely examined [14,17–20], but that for the construction ac-
tion stage remains unclear yet. In fact, in many P2P
streaming systems such as P2P-Next [27], DistribuStream
[28] and VidTorrent [29], users indeed have both incen-
tives and opportunities to modify the source codes to im-
prove their own construction-action policies.

In this paper, we conduct a systematic study on the im-
pact of user selfishness during construction action in both
tree and mesh overlays. We consider multiple QoS mea-
sures for live streaming applications, including latency,
streaming rate, and continuity. Our contribution is twofold.
First, we discuss the construction-action policy a selfish
overlay node chooses to augment its individual multi-met-
ric QoS. Second, we demonstrate that according to our mod-
el, the selfishness-aware policy in the construction action is
consistent with the cooperative policy required by overlay
multicast protocols, which aims to enhance the streaming
quality of the global multicast session. The implication is
that we can leverage the user selfishness in the construc-
tion-action stage to form a desirable overlay topology.

The rest of this paper is organized as follows. Section 2
introduces the background and related work. Section 3
establishes the model of user selfishness in overlay multi-
cast. Sections 4 and 5 discuss the impacts of user selfish-
ness in construction action on the streaming quality of
tree and mesh overlays, respectively. Section 6 makes
extensive discussions. Finally, Section 7 concludes the
whole paper.
Fig. 1. An example of tree-based overlay multicast. Each receiver has a
long-term parent node and several long-term children nodes.
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2. Background and related work

Given the obstacles in deploying IP multicast in the glo-
bal Internet, overlay multicast has emerged as a promising
alternative, particularly for live media streaming. In this
section, we introduce the background and related works
on overlay multicast architectures and its user selfishness.
e h 

c 

Fig. 2. An example of mesh-based overlay multicast. There is no pre-fixed
long-term parent/children relationship between the nodes.
2.1. Overlay multicast structures

Existing overlay multicast proposals can be broadly
classified into two categories according to the data-dis-
semination structures [26], namely, tree-based and mesh-
based. The former includes NARADA [2], NICE [3], ZIGZAG
[4], TAG [5], ALMI [6] and etc. The latter category is repre-
sented by DONet/CoolStreaming [7], Chainsaw [8], Split-
Stream [9], Bullet [10], CoopNet [11], PRO [12], PROMISE
[13] and etc. There are also proposals combining the two
types of solutions together, such as Pulsar [34], GridMedia
[37]. In what follows, we simply describe the two basic
overlay structures.

Generally speaking, in a tree-based overlay, each node
selects a parent from the neighbors to receive the stream-
ing data, and the parent/children relationships form a mul-
ticast tree, as illustrated in Fig. 1. Once the multicast tree is
established, the data is continuously propagated along the
tree (although there is still stream transmission unit
named blocks) and there is no additional control overhead
unless the tree is to be updated. In particular, when a node
leaves or fails, the tree has to be repaired and its descen-
dants may suffer from data outage.

Unlike the tree-based case, in a mesh-based overlay,
there is no fixed parent/children relationship among over-
lay nodes. Instead, each node selects a number of other
nodes as partners. The partner relationships among all
nodes form a mesh structure. In a typical mesh, the original
stream is divided into a series of segments; partners ex-
change the segment availability information with each
other, and each node fetches a certain segment from a
partner that holds the segment. Therefore, it is the data
availability that drives the propagation of the stream. An
example of a mesh overlay is shown in Fig. 2, with node
a being the source.

Compared with tree-based overlay, the segment notifi-
cation and segment requests introduce additional control
overhead. Yet mesh-based overlay tolerates node dynam-
ics better. A node observes stream pause only when a seg-
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ment is not available in any of its partners before the play-
back deadline.

Both tree and mesh have shown success in theory and
practical deployment [26]. A thorough comparison be-
tween them is out of the scope of this paper (Interested
readers may find one such comparison in [26]).

Improving the user-experienced streaming quality has
constantly been the primary design objective for either
tree-based or mesh-based overlay multicast protocols.
Many existing protocols have focused on the global
topology enhancement and supposed that all the overlay
nodes (users) are cooperative. Under this assumption,
Sripanidkulchai et al. [15] discuss different parent-selecting
methods, like randomly policy, minimum-depth-first pol-
icy, and longest-first policy. Bishop et al. [16] disclose the
advantage of preemption in favor of nodes with higher pri-
orities by experiments.

2.2. User selfishness in overlay multicast

A key difference between overlay multicast and IP mul-
ticast, however, is that the overlay nodes are strategic
application-layer agents, which can be selfish with their
own interests. Naturally, a node would like to receive as
high QoS as possible. There have been many works exam-
ining the impact of user selfishness when advertising the
private information for tree construction. Mathy et al.
[14] demonstrate the negative impact of distance cheating
among overlay nodes on the stretch and link stress of the
multicast tree. Li et al. [17] further study the impact of this
kind of cheating on the stability of multicast tree. Habib
et al. [18] point out that the QoS of overlay multicast might
be negatively influenced if some overlay nodes are not
cooperative to contribute resources, which can also be
viewed as the information cheating about outgoing band-
width or available data. Yuen et al. [19] propose a VCG-
based strategyproof algorithm to defend cheating about
node throughput. Wang et al. [20] study the cheating about
link cost in non-cooperative multicast protocols, and also
design distributed payment algorithms against this kind
of cheating. Li et al. [30] also find that buffer map cheating
in DONet/Coolstreaming will negatively affect the stream-
ing quality of the overlay network, and design service-dif-
ferentiation based incentive algorithms to defend it. Lately,
there is investigation suggesting obtaining the information
of other overlay nodes or virtual links by a trustworthy
infrastructure, like RandPeer [21].

The user selfishness problem is also widely studied in
P2P file sharing application. It is noticed that a large frac-
tion of free riders exist in the file sharing network Gnutella
[38]. Thomas et al. [23,32] investigate the P2P topology
formed by selfish users, where a peer exploits locality
properties to minimize the latency of lookup operations
and maintain limited links to other peers. They find that
the resulting topologies can be much worse than if peers
collaborated. Moreover, the network may never stabilize,
even in the absence of churn. In some P2P file sharing sys-
tems such as BitTyrant [35] and BitThief [36], it is also
found that selfish users can easily make strategic modifica-
tions in obtaining better services, while causing the aver-
age performance degradation of the whole system. To
overcome the free-rider problem in P2P networks, either
contribution-based system is designed [39], or micro-mon-
etary infrastructure is introduced [40].

In this paper, we focus on the selfish behaviors of users
in overlay multicast when they choose policies to join the
streaming-dissemination structure. The most related
works to ours are probably [22,31,33]. In [22], the authors
impose a payment mechanism to the overlay, in which a
node consumes points to request for a segment from an-
other node, and earns points by sending a segment to an-
other node. Our work does not impose any additional
mechanisms but focuses on the selfishness-aware con-
struction. Specifically, we present a systematic study on
the impact of user selfishness during construction action
in both tree and mesh overlays, and consider a comprehen-
sive set of QoS metrics, including stream latency, resolu-
tion, and continuity. In the work of [31], the authors use
a repeated-game model to analyze the cooperation behav-
ior of selfish users. The cooperation is based on the tradeoff
between a user’s short-term desire for quality and long-
term desire for the network’s continued existence. But in
our work, we go one step further by assuming that users
primarily care about its current benefit. In [33], the authors
propose a mechanism for live streaming swarms to iden-
tify free riders quickly and to guarantee that these nodes
receive a restricted amount of data such that it is not
worthwhile for them to remain in the system. In this paper,
we analyze the impact of user selfishness in the construc-
tion-action stage on the streaming quality.

Different from most previous work in this area, we find
that user selfishness in the construction-action stage can
help improve the streaming quality of the overlay multi-
cast sessions. The fundamental reason behind is, if each
selfish user is rational and adopts a construction-action
policy which is in favor of those nodes with higher upload
contributions to it, the nodes with higher capacity will be
served better than other nodes; the better positions the
stronger nodes lies in the overlay topology, usually the
streaming quality of the overlay multicast session will be
better. Hence, we can leverage the selfishness in the con-
struction-action stage to form a desirable overlay topology.
3. User selfishness model

Like in existing overlay systems, we assume that each
node maintains only a partial view of other nodes, called
neighbors. When a node joins a multicast session, it obtains
the neighbor list from a dedicated node (e.g., the source or
a node designated by the source), and this list is dynami-
cally updated to accommodate network changes. The
neighboring relationships among all nodes form a control
structure of the system. We define it neighbor density as
the average number of neighbors that each overlay node
maintains over the total number of nodes in the control
structure. The final data-delivery structure established for
an overlay multicast session is called the overlay structure.

To facilitate our discussion, we summarize the major
system parameters used throughout this paper in Table
1. The actual meaning of each notation will also be revis-
ited later.



Table 1
Major notations in this paper.

Notations Definitions

T Playback duration of a block or segment of the stream
E Stream encoding rate on the source node
A Set of receiver receiver nodes of the multicast session
e Average node degree of the overlay control structure
Q Set of all segments of the stream (for mesh overlay

only)
U Overall QoS of the multicast session
ui QoS of node i
uq

i
Segment QoS of node i for segment q (for mesh overlay
only)

di Source-to-end latency on node i
dq

i
Source-to-end latency of segment q on node i (for mesh
overlay only)

f q
i

Source-to-end latency of segment q on node i’s partners
that hold it (for mesh-based overlay only)

mij Distance from node i to node j
ri Received stream rate on node i
rq

i
Received stream rate of segment q on node i (for mesh
overlay only)

vi Total incoming bandwidth of node i
oi Total outgoing bandwidth of node i
li Past duration of node i in the multicast session
ti Expected remaining duration of node i in the multicast

session
si Average interval between stream pauses on node i
a User’s weights on stream latency
b User’s weights on stream resolution
c User’s weights on stream continuity
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There are two logical stages towards forming the over-
lay structure for an overlay multicast session, i.e., informa-
tion collection stage and construction action stage. In the
information collection stage, neighboring nodes exchange
necessary control information with each other. In the con-
struction action stage, the nodes issue requests to form the
overlay structure from scratch or join an existing overlay.
In real systems, the two stages are periodically refreshed.
For example, at some time a node i collects the private
information of other nodes and makes a construction-ac-
tion decision to join the overlay; after a while, the informa-
tion of other nodes can be refreshed and node i makes
another round of construction-action decision based on
the updated information. For most overlay multicast proto-
cols, the two stages completely compose the overlay struc-
ture. Note that we do not consider the data tamper or
similar selfish behaviors during data transmission over
the overlay topology. From the logical view, the informa-
tion collection stage and construction action stage are sep-
arated with each other.

Note that nodes (users) are selfish in overlay multicast.
On one side, each selfish node i can adopt its autonomous
policy in the two stages above when establishing the over-
lay structure, so as to augment its own QoS. In the informa-
tion collection stage, a selfish node can advertise fake
private information to neighboring nodes, in order to find
a better position in the overlay structure. Similarly, in the
construction action stage, a selfish node can use its own
policy to select the upstream or downstream nodes to
achieve better QoS. On the other side, the overlay multicast
protocol is always trying to improve the overall QoS of the
multicast session, requiring the cooperative policies of all
receivers. So a simple question is raised: are the autono-
mous policies of individual selfish receivers consistent
with the cooperative policies required by overlay
protocol?

Let U denote the QoS of the overall multicast session, ui

denote the QoS of a receiver i,ICi represent the selfish pol-
icy of a node i in the information collection stage, and CAi

represent the selfish policy of a node i in the construction
action stage. We have the following two equations.

U ¼
P

i2Aui

jAj ; ð1Þ

U ¼ FðIC1; IC2; . . . ; ICn;CA1;CA2; . . . ;CAnÞ: ð2Þ

Eq. (1) defines the overall QoS of a multicast session as the
average QoS of all individual receivers, where A is the set of
all receivers of the multicast session. Since the multicast
session as well as the overlay structure can be dynamical,
throughout this paper, the QoS of a node or the multicast
session refers to the QoS at a certain time. Eq. (2) shows
that the overall QoS of a multicast session is an output of
the autonomous policies of all selfish receivers. It is natural
since the user policies in information collection and con-
struction action determine the overlay structure estab-
lished. However, the QoS of an individual receiver i,ui, is
usually dependent on not only its own policies, but also
other receivers’ policies.

We observe that though the user policies in information
collection stage and construction action stage are usually
combined to form the overlay structure, they are orthogo-
nal. It is easy to explain by showing that user policies in the
two stages are independent with each other. First, when a
receiver i is advertising its private information to other
nodes in the information collection stage, it can send out
arbitrary information, without knowledge of the construc-
tion-action policies of other nodes and itself. Hence, user
policies in information collection stage is independent
with that of construction action stage. Second, when a re-
ceiver i decides to join the overlay structure in the con-
struction stage, it can choose arbitrary nodes as upstream
or downstream nodes from its neighbors, no matter what
private information of other nodes’ is collected. Therefore,
user policies in construction action stage is also indepen-
dent with that of information collection stage.

Therefore, we can separately study the impact of user
selfishness in information collection stage and construc-
tion action stage. Many works [14,17–20] have disclosed
that the autonomous policy of each selfish node i in the
information collection stage, ICi, is inconsistent with the
cooperative policy required by overlay protocol. The over-
all streaming quality will be negatively affected by such
kind of selfish behaviors. Consequently, additional defen-
sive policies are necessary to lead selfish nodes towards
truthfully advertising their actual private information.

We try to answer the other half of the question, i.e.,
what is the relationship between the autonomous policy
of individual receivers and the cooperative policy required
by overlay protocol in the construction action stage? We
will investigate this problem by studying the two kinds
of policies respectively, and make a comparison between
them. The implication of this investigation is significant
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for robust overlay multicast protocol design. If the two
kinds of policies are inconsistent, an integrated mechanism
should be introduced to defend against user selfishness in
both information collection and construction action.
Otherwise, we only need to focus on selfish user behaviors
in information collection stage, and can leverage the user
selfishness in construction action stage to lead the overlay
topology towards desirable streaming quality.
4. Tree-based overlay multicast

We begin our discussion on the tree-based overlay
multicast. We will first give a multi-metric QoS expression,
and then discuss the selfish policy of individual nodes and
the cooperative policy required by overlay protocol
respectively.

4.1. Multi-metric QoS

In a tree overlay, the stream latency and resolution on
each node can typically be evaluated as the source-to-
end latency and the streaming rate experienced by the
node; the stream continuity can be evaluated as the aver-
age interval between stream pauses during playback.
Hence, we detailize the meaning of ui. Assume that the
playback duration of a block (transmission unit of the
stream) and the stream encoding rate at the source node
are T and E, respectively. Given di, the source-to-end la-
tency on node i, ri, the received stream rate, li, the duration
of node i in the session so far, and si, the average interval
between stream pauses on node i so far, the QoS of node
i is shown in Eq. (3).

ui ¼
au1 þ bu2 þ cu3

aþ bþ c
; ð3Þ

in which u1 ¼ log 1þ T
Tþdi

� �
; u2 ¼ log 1þ ri

E

� �
; u3 ¼ log

1þ si
li

� �
.

Parameters a, b, and c represent the node’s (user’s)
weights on stream latency, stream resolution, and stream
continuity, respectively. The log (.) function is concave,
suggesting that the marginal QoS increment diminishes
with shorter source-to-end latency, higher stream rate,
and longer interval between pauses. It is easy to prove that
the resultant value of ui is within [0,1].

The intuition of this compound QoS expression can be
further explained under some boundary cases:

(1) If node i only cares about stream latency, i.e., b = 0
and c = 0, its QoS expression becomes ui ¼
log2 1þ T

Tþdi

� �
. In this case, the QoS measure

approaches 1 when the source-to-end latency
approaches 0, and its QoS approaches 0 if the
source-to-end latency is excessive.

(2) If node i only cares about stream resolution, i.e.,
a = 0 and c = 0, its QoS expression becomes ui ¼
log2 1þ ri

E

� �
. It approaches 1 when the received

stream rate is close to the stream encoding rate on
the source node, and its QoS approaches 0 when
the received stream rate is too low.
(3) If node i only cares about stream continuity, i.e.,
a = 0 and b = 0, its QoS expression becomes ui ¼
log2 1þ si

li

� �
. In this case, the QoS of node i equals 1

when the pause interval is just its duration in the
session (i.e., there is no pause), and approaches 0
with very short intervals, i.e., frequent pauses.

4.2. Selfish policy of individual nodes

We first study the selfish construction-action policy
adopted by individual nodes. Selfish nodes seek to improve
its own QoS. In tree-based overlay multicast, it includes
both parent-selection policy and children-acceptance
policy.

4.2.1. Parent selection
For node i to select the parent from its neighbors, there

are two representative autonomous policies:

Random policy. Randomly selects a neighbor as its par-
ent; denoted as xR.
QoS-aware policy. Selects the neighbor that can maxi-
mize node i’s QoS as its parent; denote as xS.

From node i’s selfish perspective, the QoS-aware policy
is obviously better since this policy enhances its own QoS.
We claim that the QoS-aware policy is also better for
improving the overall QoS of the overlay structure, which
will be demonstrated by the simulations later in this
section.

The key issue then becomes how for the parent-select-
ing node i to estimate its compound QoS if it were to select
neighbor j as its parent.

� Estimation of the source-to-end latency. In the informa-
tion collection stage, neighbor j tells its source-to-end
latency, dj, to its neighbors including node i, and node
i measures the distance from neighbor j to itself as mji.
The source-to-end latency on node i if selecting neigh-
bor j as the parent can thus be estimated as di = dj + mji.
� Estimation of the received stream rate. Suppose the total

incoming bandwidth of node i is vi. In the information
collection, node i learns that the total outgoing band-
width of neighbor j is oj, and the received stream rate
on neighbor j is rj. The received stream rate on node i
if selecting neighbor j as the parent can be estimated
as ri = min(rj,oj,vi).
� Estimation of the average interval between stream pauses.

We focus on stream pauses due to ancestor changes,
which is the main cause in a tree overlay. There are
two reasons for the changes: 1) the ancestor is pre-
empted by another node; and 2) it fails or leaves the
session. It is known that, if a node is frequently pre-
empted by other, it will likely be preempted again in
future [16]. In other words, a node that has experienced
longer average interval between stream pauses is likely
to have longer average interval in future as well.

More explicitly, in information collection, node i learns
the average interval between stream pauses on neighbor j
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as sj. The average interval between stream pauses on node i
if selecting neighbor j as the parent can thus be estimated
as si = sj.

It is worth noting that the duration of a neighbor is also
implicitly included in this expression. For illustration, if
node i is to select its parent from two neighbors, j1 and
j2. Neighbor j1 stays in the multicast session for 10 s and
observes 1 stream pause, while j2 stays in the multicast
session for 4 seconds and observes no stream pause. Then
neighbor j1 will be selected, which potentially enables
longer interval between ancestor changes for node i.

Given the estimations and a predicted residual duration
for node i as ti, we express the parent priority of neighbor
node j to node i, Pji as,

Pji ¼
aP1 þ bP2 þ cP3

aþ bþ c
; ð4Þ

where P1¼ log2 1þ T
Tþdjþmji

� �
; P2¼ log2 1þminðrj ;oj ;v iÞ

E

� �
; P3¼

log2 1þminðsj ;tiÞ
ti

� �
.

After assigning the parent priorities, the parent-select-
ing node i will issue a parent request with a expected rate
(the minimum of its incoming bandwidth and the stream
encoding rate) to the neighbor with the highest parent pri-
ority. If this request is rejected due to competition from
other nodes or bandwidth constraints, node i will issue an-
other request to the the neighbor with the second highest
priority, and so on.

We should emphasize that the decision is online. When
node i compares the parent priority of the current parent
with that of another neighbor, it should take the additional
pause to switch to a new parent into consideration.

4.2.2. Children acceptance
A straightforward policy for node i to accept children

depends on its outgoing bandwidth: if it is enough, then
all the parent requests can be accepted; otherwise, some
requests have to be rejected or some existing children have
to be preempted.

On the other hand, a strategic node may choose to reject
all the parent requests. Unfortunately, if all nodes choose
this policy, the system simply will not work, which in turn
hurts the strategic node.

A close investigation suggests that there are four typical
children-acceptance policies that a selfish node i might
choose:

Negative policy. Not accept any children; denoted as yN.
Random policy. Randomly accept children within its
total outgoing bandwidth; denoted as yR.
Capacity-aware policy. Prioritize neighbors that might
provide better expected QoS to node i if becoming node
i’s parent in future; denoted as yP. For example, the
neighboring nodes that have higher outgoing capacity,
shorter RTT to i and longer living time are more likely
to provide better QoS to i if it becomes the parent of i
in future.
Contribution-aware policy. Prioritize neighbors that
have since forwarded more data to node i; denoted as
yC. For example, in BitTorrent-oriented streaming sys-
tems, the tit-for-tat incentive mechanism ([24,25])
favors neighboring nodes from which node i has down-
loaded more data when i makes the uploading decision.

Since a node receives parent requests from neighbors,
and will also select its parent from neighbors, its QoS in fu-
ture is determined by the children-acceptance policies of
its neighbors and its own. The choice of children-accep-
tance polices of selfish nodes can thus be modeled as a
multi-player game. In this game, the players are the over-
lay nodes, the strategy space is {yN,yR,yP,yC}, and the payoff
to each node is its expected QoS in future. Please note that
we do not count in the forwarding cost of having children
nodes here, since we assume the streaming quality is the
dominate factor end users care about. Before locating the
equilibrium of the multi-player game, we give two defini-
tions from game theory:

Definition 1 (Dominant strategy). If si is the strategy of
player i, s�i is the strategy set of all players except player i,
and the payoff of player i is wiðsi; s�iÞ; sH

i is called the
dominant strategy for player i if it satisfies

wi sH

i ; s�i
� �

P wiðs0i; s�iÞ; 8s�i; 8s0i – sH

i : ð5Þ
Definition 2 (Dominant strategy equilibrium). If sw is the
strategy set of all players, it is called a dominant strategy
equilibrium if sH

i is the dominant strategy for each player i.
Theorem 1. The dominant strategy equilibrium in the game
of choosing children-acceptance policy is that every node
adopts policy yP.
Proof. Note that among all parent-requesting neighbors,
in future node i will most likely send parent requests to
those with higher QoS, since QoS-aware policy is the pre-
ferred parent-selection policy. We call such neighbors as
better potential parents for node i.

For node i, its payoff depends on the children-accep-
tance policies of its neighbors and its own. The neighbors
of node i can adopt different policies from each other.
However, for simplicity of node i to estimate its payoff, it
can assume that all its neighbors use the same policy out of
the four possible ones. In other words, node i assumes the
dominant policy of its neighbors and makes the corre-
sponding counter-policy for each one.

Let yk
i (k = N,R,P,C) denote that node i adopts policy yk,

and yk
�i (k = N,R,P,C) denote that the neighbors of node i

adopt the policy yk, the payoff of node i is shown in
Table 2.

The payoff numbers in Table 2 only represent the
relative value, not the absolute QoS of node i in future.
However, it is sufficient for us to find the dominant
strategy of node i. We now explain Table 2 as follows:

(i) Second column: If the neighbors choose policy yN,
the payoff of node i is obviously 0, indicating that
node i cannot find any parent from these neighbors
in future.



Table 2
Payoff of node i.

yN
�i yR

�i yP
�i yC

�i

yN
i

0 2 2 1

yR
i

0 2 2 2

yP
i

0 2 2 4

yC
i

0 2 2 3
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(ii) Third column: If the neighbors choose policy yR, the
payoff of node i is 2, no matter which policy node i
adopts. Because the child priority of node i to any
neighbor node j (including the better potential par-
ents) in future is random and can be viewed as iden-
tical with other neighbors of node j.

(iii) Fourth column: If the neighbors choose policy yP, the
payoff of node i is also 2, no matter which policy
node i adopts. This is because, compared with other
neighbors of node j, the relative capacity of node i to
any neighbor node j (including the better potential
parents) in future is also random.

(iv) Last column: If the neighbors choose policy yC, the
payoff of node i depends on its own policy. We will
discuss the four cases when node i chooses policy
yN, yR, yC, yP:
Case 1: If node i chooses policy yN, its payoff is 1. Node i
still has the chance to become the child of any
neighbor node j in future, if node j has available
outgoing bandwidth; but the child priority of
node i to node j is the lowest, because it provides
no data to node j. Thus, the payoff of node i is
more than 0 but less than when it adopts policy
yR.

Case 2: If node i chooses policy yR, its payoff is 2. Since
node i chooses the random policy, its contribu-
tion to any neighbor node j (including the better
potential parents) is also random. Thus, the
child priority of node i to the contribution-
aware neighbor j in future can be viewed as
random.

Case 3: If node i chooses policy yC, its payoff is 3. The
nodes that have since contributed more to node
i will be better potential parents for node i in
future (recall the previous discussion about esti-
mating average pause intervals). The QoS of
node i in future will be higher than if it adopts
policy yR, because the better potential parents
are likely to be served better from a contribution
point of view.

Case 4: If node i chooses policy yP, its payoff is 4. The
payoff of node i is higher than if adopting policy
yC, because the prioritized neighbors are just the
better potential parents, to which parent
requests will be sent first in future.

Therefore, according to Definition 1, yP is the dominant
strategy of node i. According to Definition 2, the dominant
strategy equilibrium in the game of choosing children-
acceptance policy is that all nodes choose policy yP. h
The next issue is how for node i to assign the child pri-
orities to the parent-requesting nodes under policy yP. The
expected QoS of node i if selecting some parent-requesting
node j as the parent in future is estimated by two factors,
that is, the QoS of node i if node j accepts it as a child in fu-
ture and the probability of node j accepting node i as a
child in future.

For estimating the QoS of node i if neighbor j accepts it
as a child in future, node i does not have the information of
source-to-end latency of node j, the received stream rate of
node j, nor the average interval between stream pauses on
node j when node j becomes node i’s parent in future. The
information available for node i to estimate includes the
distance from node j to node i, the total incoming band-
width and outgoing bandwidth of node j, and the passed
duration of node j in the multicast session.

On estimating the probability of node j accepting node i
as a child in future, the nodes that have higher outgoing
bandwidth and longer duration in the multicast session
are prioritized. We can just use the product of the two
parameters since only the relative value of the probability
is useful.

Therefore, the child priority of node j to node i, Cji, is as-
signed as Eq. (6).

Cji ¼
aC1 þ bC2 þ cC3

aþ bþ c
� H; ð6Þ

where C1 ¼ log2 1þ T
Tþmji

� �
; C2 ¼ log2 1þ minðE;v j ;oj ;v iÞ

E

� �
; C3 ¼

log2 1þ minðlj ;tiÞ
ti

� �
, and H = oj ⁄ lj.

Eq. (6) suggests that the overlay nodes with higher out-
going bandwidth, higher incoming bandwidth and longer
staying time, and those closer to other nodes in the overlay
network will be assigned with higher child priorities in
construction action. We find that prioritizing the nodes
with higher capacities also helps improving the overall
QoS, which will be demonstrated by the simulations in
the following subsection.

4.3. Cooperative policy required by overlay protocol

In this subsection, we use simulation to study the coop-
erative policy required by tree-based overlay protocols.
The overlay protocol always tries to maximize the overall
QoS of the multicast session. We set the policy space the
same as the one used by individual nodes, i.e., random pol-
icy (xR) and QoS-aware policy (xS) for parent selection, and
negative policy (yN), random policy (yR), capacity-aware
policy (yP) and contribution-aware policy (yC) for children
acceptance.

We use the GT-ITM toolkit to generate network-layer
topologies. Unless otherwise specified, the following de-
fault settings are used in the simulation. There are 2000
routers in the network-layer topology and the link dis-
tances between connected routers are uniformly distrib-
uted in [10 ms,500 ms]. The overlay nodes as well as the
source node are attached to different routers randomly se-
lected from the 2000 routers. The outgoing bandwidth of
each node is within [0 kbps,8000 kbps], and the incoming
bandwidth of each node is within [500 kbps,10000 kbps].
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The playback duration of a block is 5 s, and the stream
encoding rate at the source node is 1 Mbps. To mitigate
randomness, we generate 10 different network-layer
topologies for each simulation on the above settings and
the results presented below are their average.

To evaluate the overall QoS of the multicast session
under different network situations, we test various sys-
tem configurations. For each configuration, the receiver
node with lower sequence number joins earlier in the
multicast session and leaves later from the multicast
session, which is an important assumption in this paper
stated previously.

We compare the overall QoS of the multicast session
under the combination of different parent-selection poli-
cies and children-acceptance policies, that is, xR + yR,
xS + yR, xR + yP, xS + yP, xR + yC, and xS + yC. The children-
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Fig. 4. Overall QoS of the tree-based overlay multicast session. w1 = xR + yR, w
b = 0.6, and c = 0.2.
acceptance policy yN, i.e., not accepting any children, is
not considered here because, as mentioned, it does not
work for practical systems. We first fix the total number
of receiver nodes, n, as 200, and vary the average node de-
gree of the overlay control structure, e, from 10% to 90%.
We then fix the average node degree as 20%, and vary
the total number of receiver nodes from 100 to 700.

For QoS evaluation, we put different weights on stream
latency, resolution, and continuity. For a combination of a,
b, and c as 0.6, 0.2 and 0.2, we plot the overall QoS of the
multicast session for the two network settings above in
Fig. 3. For combination of 0.2, 0.6 and 0.2, the result is
shown in Fig. 4. And finally, for combination of 0.2, 0.2,
and 0.6, the result is in Fig. 5.

From the simulation results, we have the following
observation:
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� Given the same children-acceptance policy, the overall
QoS under QoS-aware parent-selection policy is gener-
ally better than that under random parent-selection
policy. This is because enhancing the QoS of an individ-
ual selfish node i potentially enables better QoS for
other nodes that might select i as parent.
� Given the same parent-selection policy, the overall QoS

under capacity-aware children-acceptance policy is the
best among the three children-acceptance policies.
Intuitively, a higher-capacity node i has more opportu-
nities to be the parent of other nodes, and the improve-
ment of QoS on node i will also help improving the QoS
of nodes that select i as parent.

Therefore, the cooperative policy required by tree-
based overlay protocol is QoS-aware parent-selection pol-
icy and capacity-aware children-acceptance policy. It is ex-
actly the same as the selfish construction-action policy
used by individual nodes. In other words, user selfishness
in construction action will lead to a desirable tree overlay.

5. Mesh-based overlay multicast

We next discuss the mesh-based overlay construction.
There are again two stages toward establishing the overlay
structure. In the information collection stage, each node
learns the information of partners, including the segment
availability, the outgoing bandwidth, the distances from
partners to it, and etc. In the construction action stage,
each node sends a segment request to the partner selected
as the segment-providing node for a certain segment, and
responds to the received segment requests with the corre-
sponding segments if its outgoing bandwidth allows.

5.1. Multiple-metric QoS

The multi-metric QoS for a mesh overlay can be ex-
pressed similarly to that in the tree case. The stream
latency and resolution are respectively evaluated as the
average source-to-end latency and the average streaming
rate across of all the segments. The stream continuity is
still evaluated as the average interval between stream
pauses, but a pause is caused by the segment scarcity in
partners, for there are no predefined ancestors as in the
tree case.

Let T, E, and Q be the playback duration of a segment,
the stream encoding rate at the source node, and the seg-
ment set of the stream, respectively. Let dq

i be the source-
to-end latency of segment q on node i; rq

i be the streaming
rate of segment q,li be the duration of node i in the session
so far, and si be the average pause interval so far. Like in the
tree case, we express the segment QoS of node i for seg-
ment q;uq

i as

uq
i ¼

auq
1 þ buq

2

aþ b
; ð7Þ

where uq
1 ¼ log2 1þ T

Tþdq
i

� �
; uq

2 ¼ log2 1þ rq
i
E

� �
.

And the QoS of node i, ui, is expressed as

ui ¼
au1 þ bu2 þ cu3

aþ bþ c
; ð8Þ

where u1 ¼

P
q2Q

log2 1þ T
dq

i
þT

� �
jQ j ; u2 ¼

P
q2Q

log2 1þ
rq
i
E

� �
jQ j ; u3 ¼ log2

1þ si
li

� �
.

5.2. Selfish policy of individual nodes

As in the tree-based overlay protocol, we start from
analyzing the selfish policy of individual nodes in this sub-
section, followed by demonstrating the cooperative policy
required by overlay protocol in the next subsection. For
mesh-based overlay multicast, the construction-action
policy is comprised of both segment-request policy and
segment-response policy.

5.2.1. Segment request
In the mesh, each node exchanges segment availability

information with partners, and finds which partners hold
certain segments. If a segment is held by multiple partners,
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a segment-providing node is selected among these part-
ners for the segment. There are also two representative
policies for node i to select the segment-providing node
for segment q.

Random policy. Randomly selects a partner that holds
segment q as the segment-providing node; denoted as
xR0 .
QoS-aware policy. Selects the partner that can maxi-
mize the QoS of node i for segment q as the segment-
providing node; denoted as xS0 .

Because of the same reason in tree-based overlay mul-
ticast, QoS-aware policy is the preferable choice of selfish
overlay nodes. We claim that the QoS-aware policy is also
better for improving the overall QoS of the multicast ses-
sion, which will be demonstrated by the simulations later
in this section.

The remaining issue here is how for the segment-
requesting node i to estimate its segment QoS for segment
q if selecting partner j as the segment-providing node.

Since the requesting segment q is wholly available in
the segment-providing node, when node i decides to re-
quest segment q, the source-to-end latencies of segment
q on the partners that hold it at that time are identical, de-
noted as f q

i .
In the information collection, node i has measured the

distance from partner j to it, mij, and learned the outgoing
bandwidth of partner j, oj. Based on these information, the
segment-request priority of node j to node i for segment
q;Rq

ji, is assigned as Eq. (9).

Rq
ji ¼

aRq
1 þ bR2

aþ b
; ð9Þ

where Rq
1 ¼ log2 1þ T

Tþmjiþf q
i

� �
; R2 ¼ log2 1þ minðE;oj ;v iÞ

E

� �
.

The segment-requesting node i will issue a segment re-
quest with a required rate (the minimum of its incoming
bandwidth and the stream encoding rate) to the partner
of the highest priority for the segment. If the request is re-
jected, node i will contact the partner with the second
highest priority, and so on.

5.2.2. Segment response
When a node receives multiple segment requests from

partners, it needs a segment-response policy to accept
the requests within its total outgoing bandwidth. Like in
tree, there are four representative segment-response poli-
cies for selfish node i.

Negative policy. Not respond to any segment request;
denoted as yN0 .
Random policy. Randomly respond to segment requests
within its total outgoing bandwidth; denoted as yR0 .
Capacity-aware policy. Prioritize partners that might
provide higher expected segment QoS to node i if
becoming node i’s segment-providing nodes in future;
denoted as yP0 .
Contribution-aware policy. Prioritize partners that
have ever forwarded more segments to node i; denoted
as yC0 .
We can again apply the multi-player game to examine
the choice of segment-response policy. In this game, the
players are the overlay nodes, the strategy space is
fyN0 ; yR0 ; yP0 ; yC0 g, and the payoff of each node is its expected
segment QoS in future.
Theorem 2. The dominant strategy equilibrium in the game
of choosing segment-response policy in mesh-based overlay
multicast is that each node adopts the policy yP0 .
The proof of Theorem 3 is similar to that for Theorem 2.
We now focus on practically how for node i to assign the
segment-response priority to a segment-requesting node
j. To predict the future segment QoS of node i if choosing
node j as the segment-providing node, node i needs to
learn the distance from node j to it and the total outgoing
bandwidth of node j in the information collection stage. In
addition, node i needs to estimate the probability of its seg-
ment request being accepted by node j in future. The nodes
that have higher outgoing bandwidths and stay longer in
the multicast session will likely accept the segment re-
quest of node i with higher probability in future (as in
the tree base, we just multiply the two parameters). There-
fore, the segment-response priority of node j to node i, Gji,
can be assigned as Eq. (10).

Gji ¼
aG1 þ bG2

aþ b
� H; ð10Þ

where G1 ¼ log2 1þ T
Tþmji

� �
; G2 ¼ log2 1þ minðE;oj ;v iÞ

E

� �
; H ¼

oj � lj.
Eq. (10) suggests that the overlay nodes with higher

outgoing bandwidth and longer duration, and those closer
to other overlay nodes are assigned with higher segment-
response priorities in the mesh construction action. Our
following simulation results also show that prioritizing
these nodes enhances the overall QoS of the overlay
structure.

5.3. Cooperative policy required by overlay protocol

Again we use simulation to study the cooperative policy
required by mesh-based overlay protocols. We also set the
policy space the same as the one used by individual nodes,
i.e., random policy ðxR0 Þ and QoS-aware policy ðxS0 Þ for seg-
ment request, and negative policy ðyN0 Þ, random policy
ðyR0 Þ, capacity-aware policy ðyP0 Þ and contribution-aware
policy ðyC0 Þ for segment response.

The default simulation settings for mesh are similar to
those for tree. We assume that the stream is divided into
600 segments, each segment is of 5 s, and the number of
partners each node maintains is 4, as recommended in [7].

We again compare the overall QoS of the multicast ses-
sion under different combinations of segment-request pol-
icies and segment-response policies, that is, xR0 þ yR0 ; xS0þ
yR0 ; xR0 þ yP0 ; xS0 þ yP0 ; xR0 þ yC0 , and xS0 þ yC0 . Likewise, the
negative segment-response policy, yN0 , is not considered.
To evaluate the overall QoS under different network con-
figurations, we first fix the total number of receiver nodes,
n, to 200, and vary the average node degree of the overlay
control structure from 10% to 90%; we then fix the average
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node degree to 20%, and change the total number of recei-
ver nodes from 100 to 700.

As in the simulation of tree overlay, we also consider
different weights combinations on stream latency, resolu-
tion, and continuity. The corresponding results for (a,b,c)
of (0.6,0.2,0.2), (0.2,0.6,0.2), and (0.2,0.2,0.6) are shown
in Figs. 6–8, respectively.

From all these figures, we have the following observa-
tions, which are consistent with those made in the tree
case:

� Given the same segment-response policy, the overall
QoS under QoS-aware segment-request policy is always
better than under random segment-request policy.
Because the QoS-aware policy not only improves the
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Fig. 7. Overall QoS of the mesh-based overlay multicast session. w1 ¼ x
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segment QoS of the requesting node itself, but will also
help improve the segment QoS of the nodes that select
it as segment-providing node.
� Given the same segment-request policy, the overall QoS

under capacity-aware segment-response policy is the
best among the three segment-response policies. This
is because a higher-capacity node i has more opportuni-
ties to be a segment-providing node, and augmenting
its QoS thus helps with improving the QoS of nodes that
select i as the segment-providing node.

We can see that the cooperative policy required by mesh-
based overlay protocol is also QoS-aware segment-request
policy and capacity-aware segment-response policy, which
is consistent with the selfish construction-action policy
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used by individual nodes. In other words, user selfishness in
construction action can help improve the streaming quality
of the mesh overlay.

6. Discussions

In this section we make more discussions on our work.
First, we have answered the question proposed in

Section 3. In either tree or mesh based overlay multicast,
the autonomous policy of selfish individual users is con-
sistent with the cooperative policy required by overlay
protocols. Hence, it releases us from designing defensive
mechanism against user selfishness in construction ac-
tion. Instead, for robust and trustworthy overlay multi-
cast design, we should focus on tackling with user
selfishness in information collection stage, since previous
studies have shown that the fake information advertised
by selfish users brings negative impact on the global
multicast session.

Second, when proving the autonomous policies an indi-
vidual user chooses in the construction action stage, we as-
sume that all its neighbors adopt the same construction-
action policy for simplicity. In fact, this assumption does
not lose any generality. If considering that neighbors adopt
different construction-action policies, the payoff table will
be much more complex. But we can divide the neighbors
into several groups, each group with identical policy. And
the conclusion still holds.

Third, we do not consider collusion among individual
users in this paper. In real systems, two or more users
can collude by knowing the construction-action policies
of each other. We illustrate a simple example for this kind
of collusion. Given there are n receivers, n � 1 receivers can
collude by not accepting the parent request or segment-
sending request of the left one receiver. The n � 1 receivers
can benefit from this collusion since some of them may get
closer to the source, or get higher streaming rate. Although
we do not want to thoroughly solve collusion problem in
this paper, we think one possible approach is to introduce
a third-party authority, and some punishment mechanism
is used.
7. Conclusion

In this paper, we investigated the impact of user selfish-
ness in construction action on the streaming quality of
overlay multicast sessions, for both tree and mesh over-
lays. Our study considers multiple QoS measures for live
streaming applications, including stream latency, stream
resolution, and stream continuity. We discuss the con-
struction-action policy a selfish overlay node chooses to
enhance its individual multi-metric QoS. The analytical
and simulation results reveal that the selfish policies cho-
sen by individual nodes are consistent with improving
the overall QoS of the multicast session. Therefore, given
that users advertise true private information in the infor-
mation collection stage, the user selfishness in the con-
struction action stage can lead to a desirable overlay
multicast topology, and no additional defensive mecha-
nism is required for user selfishness in this stage.
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